Search results

Search for "plasmonic nanostructures" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • additional peroxidase substrates in LFAs increased the detection limit from the nanogram to the picogram level [16][17]. Various tracer elements have been developed to increase the sensitivity of an assay, including noble metal nanomaterials, metal oxides, plasmonic nanostructures, carbon-based materials
PDF
Album
Review
Published 04 Oct 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • . Plasmonic nanoantennas [3], although with relatively low Q-factors resulting from material dissipation, still provide a large level of field enhancement due to the deep-subwavelength level of mode confinement. As new alternatives to plasmonic nanostructures, all-dielectric nanostructures supporting Mie
PDF
Album
Full Research Paper
Published 06 Mar 2023

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • nanophotonics [3]. They can also serve as catalysts for controlled chemical vapour deposition [4]. While gold is the most widely used material for fabrication of plasmonic nanostructures, silver can offer a less expensive alternative [5][6][7]. Electron beam (EB) lithography is a popular method for the
PDF
Album
Full Research Paper
Published 22 Sep 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through
  • ethanol and dried at 50 °C. Plasmonic nanostructures were prepared by thermal dewetting of gold thin films. Thin Au films with a thickness of 2.8 nm were deposited using a tabletop DC magnetron sputtering coater (EM SCD 500, Leica) in pure Ar plasma (argon, Air Products, 99.999%) at a pressure of 0.2 Pa
  • increase of luminescence for samples with plasmonic nanostructures can be explained by a local concentration of the electric field around the nanostructures. It could increase the rate of excitation [3]. The additional Al2O3 dielectric layer separates plasmonic gold nanostructures and TiO2:Eu luminescent
PDF
Album
Full Research Paper
Published 22 Nov 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • temperature showing a clear increase in the PL emission. Besides Ag nanorods and nanospheres, other plasmonic nanostructures, such as Ag nanocubes and nanostars tend to enhance LED properties owing to their sharp facets and edges [105][106]. Yu et al. have incorporated Ag nanocube core coated with SiO2 shell
PDF
Album
Review
Published 24 Sep 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • analytes are depicted in Figure 4. The initially prepared plasmonic nanostructures yielded a rather intensive SERS signal for CuTMpyP4 bearing positive charge (Figure 5a, number 6). However, no spectrum was obtained for the negatively charged porphyrin CuTSPP4 (Figure 5b, number 6). Treatment of Ag NPs
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • and gold flake (cf. Supporting Information File 1, section “Challenges in the patterning of the plasmonic tetramers”). Nevertheless, we show here, for the first time, high-fidelity patterning of plasmonic nanostructures with geometrical details as small as 3 nm. This is mainly achieved by defining a
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • Narutowicza 11/12, 80-233 Gdansk, Poland 10.3762/bjnano.11.40 Abstract Ag-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution
PDF
Album
Full Research Paper
Published 25 Mar 2020

Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by x-scan technique

  • Tushar C. Jagadale,
  • Dhanya S. Murali and
  • Shi-Wei Chu

Beilstein J. Nanotechnol. 2019, 10, 2182–2191, doi:10.3762/bjnano.10.211

Graphical Abstract
  • properties of plasmonic nanostructures differ significantly from those of the corresponding bulk materials, mainly because of two reasons, i.e., the enhancement in the surface-to-volume ratio and the appearance of resonance effects such as surface plasmon resonance (SPR). For example, the color, or more
  • precisely the scattering and absorption spectra, of metallic nanostructures can be completely different from their bulk counterparts. Plasmonic nanostructures, in general, are characterized by strong scattering, great photo-stability, high brightness and exceptional localization precision. In addition, SPR
  • plasmonic nanostructures [4][5][6]. The potential applications of nonlinear nanoplasmonics include nanolasers [7], nanoantennas [8], surface plasmon polariton (SPP)-based waveguides [9], nanostructure-based optical limiters [10], nanoscopy instruments [11][12], and nanoelectronics as integrated optical
PDF
Album
Full Research Paper
Published 06 Nov 2019
Graphical Abstract
  • scattering (SERS), the Raman scattering cross-section of molecules adsorbed on the surface of plasmonic nanostructures is enormously increased compared to the same isolated molecules [1][2][3][4][5]. In particular, the SERS enhancement factor can reach values as high as 1012, which can be attributed to two
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • signal intensity [3]. When incident light interacts with the free conduction electrons near the metallic plasmonic nanostructures, the collective oscillation of these electrons is significantly enhanced at metal–dielectric interfaces, which is known as localized surface plasmon resonance (LSPR). Namely
  • develop SERS substrates. Metal plasmonic nanostructures with specific shapes such as Au nanorods [9], Au nanostars [10], Ag nanocubes [11], porous Au nanoparticles [12] and pyramidal Ag [13] have been successfully synthesized by wet-chemical approaches. These plasmonic nanostructures can be used as SERS
  • and homogeneous plasmonic nanostructures. These physical methods, unfortunately, are limited by their high cost and time-consuming experimental processes. By using chemical methods (“bottom-up” techniques), Au or Ag nanoparticles were prepared to develop two- and three-dimensional nanostructures
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Silencing the second harmonic generation from plasmonic nanodimers: A comprehensive discussion

  • Jérémy Butet,
  • Gabriel D. Bernasconi and
  • Olivier J. F. Martin

Beilstein J. Nanotechnol. 2018, 9, 2674–2683, doi:10.3762/bjnano.9.250

Graphical Abstract
  • second harmonic light from these plasmonic nanostructures is addressed in detail. Our results show that the distribution of the second harmonic sources, especially on the arm sides, plays a non-negligible role in the overall second harmonic emission. This contribution is induced by retardation effects at
  • the pump wavelength and results in a dipolar second harmonic emission. Keywords: gold; nanoantennas; nonlinear plasmonics; second harmonic generation; surface integral equation method; Introduction Due to their high density of free electrons, plasmonic nanostructures offer the possibility to
  • proven to be an important, practical way to control light–matter interaction down to the nanoscale [3][4][5]. To even further enhance this interaction, it was proposed to couple two plasmonic nanostructures by bringing them close to each other, resulting in a nanoantenna made of two arms separated by a
PDF
Album
Full Research Paper
Published 15 Oct 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • -field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid
  • symmetry. Metal-less nanophotonics based on dielectrics of high refractive index and semiconductors recently emerged as a promising alternative to plasmonic nanostructures for linear and nonlinear nanophotonic applications due to the reduced losses at optical frequencies [15]. Since in high-index
PDF
Album
Full Research Paper
Published 27 Aug 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

  • Lukáš Ondič,
  • Marian Varga,
  • Ivan Pelant,
  • Alexander Kromka,
  • Karel Hruška and
  • Robert G. Elliman

Beilstein J. Nanotechnol. 2018, 9, 2287–2296, doi:10.3762/bjnano.9.213

Graphical Abstract
  • spatial collection angle of 14°. Keywords: leaky modes; photoluminescence; photonic crystals; silicon nanocrystals; Introduction Photonic and plasmonic nanostructures can be employed to manipulate light on the nanoscale [1][2][3][4]. For example, photons emitted within a thin waveguiding layer can be
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • strength or the signal enhancement, and the achievable confinement of the light in plasmonic nanostructures [10][11][12][13][14]. Furthermore, this stimulated the discussion of the onset of non-classical phenomena, such as, screening effects, non-localities and charge transfer in coupled plasmonic systems
PDF
Album
Full Research Paper
Published 17 Aug 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • presence of larger nanoparticles (e.g. ≈80 nm) [34]. Another critical parameter affecting both the sensitivity and the electromagnetic field distribution around plasmonic nanostructures is the interparticle spacing. Higher wavelength sensitivity and larger sensing volume have been theoretically and
PDF
Album
Full Research Paper
Published 29 May 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • : apertureless scanning near-field optical microscopy; diffuse signal; nanosphere lithography; photomultiplier tube; plasmonic nanostructures; Introduction SNOM (scanning near-field optical microscopy) is an imaging technique based on an optical near-field probe for high spatial resolution [1][2]. A version of
  • are compared to numerical simulations by finite elements. A good agreement is found, attesting to the validity of our method of analysis and making it an alternative technique to study the hot spots in plasmonic nanostructures. Results and Discussion As mentioned previously, the near-field information
  • nanotriangles appears brighter. It has been shown in previous studies that such features could be associated to topographic artifacts. Yet, instead of systematically appearing at the edges of the plasmonic nanostructures, the brighter regions are located at the apexes of the nanotriangles while the rest of the
PDF
Album
Full Research Paper
Published 23 May 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • [147][148]. Bio-inspired plasmonic nanostructures/architectures The pioneering works of several research groups have revealed that by mimicing biological systems, such as butterfly wings [149] and snake skin [150], systems can be designed that are cable of absorbing NIR light due to their distinctive
PDF
Album
Review
Published 19 Feb 2018

High-contrast and reversible scattering switching via hybrid metal-dielectric metasurfaces

  • Jonathan Ward,
  • Khosro Zangeneh Kamali,
  • Lei Xu,
  • Guoquan Zhang,
  • Andrey E. Miroshnichenko and
  • Mohsen Rahmani

Beilstein J. Nanotechnol. 2018, 9, 460–467, doi:10.3762/bjnano.9.44

Graphical Abstract
  • properties can be adapted to a diverse set of applications along the electromagnetic spectrum [3] including dispersion engineering [4], polarization manipulation [5][6], pulse shaping [7], sensing [8][9] and tuning [10]. The first generation of metasurfaces mostly consisted of plasmonic nanostructures [11
PDF
Album
Full Research Paper
Published 06 Feb 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

  • Somi Kang,
  • Sean E. Lehman,
  • Matthew V. Schulmerich,
  • An-Phong Le,
  • Tae-woo Lee,
  • Stephen K. Gray,
  • Rohit Bhargava and
  • Ralph G. Nuzzo

Beilstein J. Nanotechnol. 2017, 8, 2492–2503, doi:10.3762/bjnano.8.249

Graphical Abstract
  • microscope (Bruker Optics) with an excitation laser wavelength of 785 nm, an excitation power of ≈5 mW, focal length of 45 mm and acquisition time of 30 s. Raman spectra were collected over a Raman shift range of 500–1800 cm−1. Finite-difference time-domain simulation of plasmonic nanostructures A set of 3D
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • interesting materials for application in dye-sensitized solar cells (DSSCs) and photocatalysis. In fact, it has been shown that plasmonic nanostructures can enhance the efficiency of DSSCs by four possible mechanisms [66]. The far-field coupling of scattered light and the near-field coupling of
  • number of e−/h+ pairs should also result in improved photocatalytic properties of titania-based plasmonic nanostructures. Conclusion In this paper, we have shown that by using a general and simple approach it is possible to synthesize Ag@TiO2 and Au@TiO2 CSNs with shell thickness of ≈40–70 nm and 90 nm
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • light polarization plays a fundamental role. Polarization studies have been performed on plasmonic nanostructures, see, e.g., [54]. While theoretical models have confirmed the experimental observations limited only to perfectly smooth nanogaps with idealized geometry [54][55], other investigations
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver
  • to the plasmonic nanostructures are probed by surface-enhanced Raman scattering (SERS) and two-photon-excited analogous surface-enhanced hyper-Raman scattering (SEHRS) [21][22]. While SERS signals scale with the local optical field strengths by 104, SEHRS signals have a scaling factor of 106. This
  • high non-linearity makes SEHRS a very sensitive method to probe spatial variations in local fields and to localize plasmonic nanostructures, surpassing also SERS. Here we compare SEHRS images and bright field microscopy of the onion cell layers. Additionally, our SERS and SEHRS experiments give
PDF
Album
Full Research Paper
Published 09 Jun 2016

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • 10.3762/bjnano.6.52 Abstract Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been
  • an extended time and inducing a suitable reduction of the regeneration time of the chip. Keywords: biosensors; nanodevices; plasmonics; sol–gel; thin films; Introduction Plasmonic nanostructures have gained increasing attention for their surface plasmon resonance (SPR)-related properties, which can
  • at a metal–dielectric interface [1][2][3][4][5]. Recently, due to such remarkable properties, biosensing technologies based on plasmonic nanostructures have attracted significant attention, particularly in the development of label-free sensors [6][7][8]. It is well known that surface plasmons (SPs
PDF
Album
Full Research Paper
Published 19 Feb 2015
Other Beilstein-Institut Open Science Activities